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Drug resistance is a major obstacle to controlling infec-
tious diseases. A key challenge is detecting the early signs
of drug resistance when little is known about its genetic
basis. Focusing on malaria parasites, we propose a way to
do this. Newly developing or low level resistance at low
frequency in patients can be detected through a pheno-
typic signature: individual parasite variants clearing more
slowly following drug treatment. Harnessing the abun-
dance and resolution of deep sequencing data, our ‘selec-
tion differential’ approach addresses some limitations of
extant methods of resistance detection, should allow for
the earliest detection of resistance in malaria or other
multi-clone infections, and has the power to uncover the
true scale of the drug resistance problem.

Drug resistance and clearance curves
The evolution of drug-resistant pathogens is a major chal-
lenge in the fight to control infectious diseases. Malaria
parasites are a prime example of this: resistance has
evolved to nearly every antimalarial drug in use [1] and
appears to be emerging against the current front-line
artemisinin derivatives [2–7]. Ensuring the continued effi-
cacy of these important drugs requires good surveillance,
early and rapid detection of resistance, and containment of
its spread [3,8–13]. Ideally, resistance would be detected
when it is at a low level (drug ‘tolerance’) and low frequency
in a patient, well before it has become a clinical problem.
Once a new drug resistance mutation has generated suffi-
cient treatment failure to arouse suspicion, its spread is
probably well advanced. Current methods used to detect
resistance struggle to detect rare or low level resistance.
Here we propose a new approach that in principle has
substantially greater sensitivity.

Three main tools are used to detect drug-resistant
malaria parasites. For simplicity, here we use the term
‘resistance’ to include any significant reduction in drug
sensitivity below that found in wild type populations prior
to drug use, including weak resistance or drug tolerance,
although we note that there is disagreement over whether
these phenotypes should be considered resistance [14,15].
These three tools are: (i) molecular markers of resistance, (ii)
in vitro susceptibility tests, and (iii) therapeutic efficacy
tests. Limitations of these approaches have been described
in detail elsewhere (e.g., [12,16,17]). Briefly, searching for
molecular markers requires knowledge of parasite candi-
date genes or pathways, yet little can be known in advance
about the mechanisms underlying resistance when it is just
starting to emerge. This is particularly so in malaria para-
sites where resistance mechanisms frequently involve loci
other than those encoding drug targets [18]. Further, the list
of known genetic markers of resistance will never be an
exhaustive set of all pathways to resistance; new resistance
mechanisms could regularly be evolving, and mechanisms
need not be genetic. Testing the susceptibility of parasites to
drugs in vitro is problematic because in vivo phenotypes do
not necessarily correlate with in vitro performance (e.g., [4]),
in addition to being technically challenging, laborious, and
expensive. Although less technically demanding, therapeu-
tic efficacy tests are logistically challenging and imprecise.
The World Health Organization protocol [19] involves ex-
tensive follow up, monitoring patients for up to 1 month or
more, during which time any estimate of resistance could be
confounded by reinfections or relapses from liver stages.
That protocol also sets out rigid criteria for parasitemia
and other symptoms over the course of infections that
indicate parasite resistance, thus failing to control for any
possible sources of interindividual variation (e.g., host fac-
tors such as immunity, drug compliance, or coinfection)
[8,11,16,20,21].

Recent studies of drug resistance in malaria parasites
have addressed some of these problems by using a more
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quantitative tool for assaying therapeutic efficacy, the
parasite clearance curve [2,4,6,7,22,23]. The remarkable
efficiency with which artemisinins act generates a pattern
of log-linear decline in parasite densities on a very short
timescale [24–26]. With sufficiently frequent sampling of
parasite densities, the slope of their decline can be used to
calculate a half-life (the time it takes for parasites to reach
half of their initial density) [24,27,28]. Parasites that are
cleared more slowly from a patient have longer half-lives
and are deemed more ‘resistant’. Comparisons of the aver-
age half-lives of parasites in different host populations
have demonstrated artemisinin resistance emerging in
Cambodia [4–6], Thailand [2], and Myanmar [7] and failing
to emerge, for now, in Laos [23] and Mali [29].

Parasite clearance curves are important tools for de-
fining host population level distributions of parasite half-
lives, and they have the advantage of being able to
account for some of the variation that occurs between
hosts. For example, some infections show a lag phase
before parasite densities start to drop after treatment is
initiated, or a tail phase where parasite densities remain
above the detectable threshold after a period of log-linear
decline [24,27]. The Parasite Clearance Estimator [27]
controls for these nonlinearities when estimating a half-
life. Although these patterns could be the result of host
effects, they could also be measurement errors or, impor-
tantly, could indicate parasite subpopulations within a
host that respond differently to treatment [24]. Parasite
clearance curves are not able to give finer resolution on
this sort of within-host variation because they are not
designed for making inferences at this level. A parasite
clearance curve offers a single estimate of the clearance
rate of parasites: a weighted average of the clearance
trajectories of all parasites within a patient [24]. Malaria
infections in humans seldom consist of one parasite clone;
many parasite genotypes share their hosts with other
genotypes (e.g., [30–38]). A consequence of this is that
resistant parasites will often share their host with sensi-
tive parasites, particularly early in the evolutionary pro-
cess as resistance is spreading. Attempts to interpret
clearance curves for individual patients are affected by
this within-host diversity.

Consider a patient that harbors two parasite clones: a
fast-clearing, drug-sensitive clone and a slow-clearing,
drug-resistant clone. When the clearance of these individ-
ual clones cannot be directly tracked, two opposing con-
clusions can be reached, depending on the relative
frequency of the clones. If these two clones are at equal
frequencies in a patient when drug treatment is initiated,
then the clearance curve observed follows the trajectory of
the resistant parasite, because it quickly becomes numeri-
cally dominant in a drug-treated infection (Figure 1A). If,
however, the resistant clone is initially at low frequency in
the patient, then our ability to ‘see’ those resistant para-
sites in the infection is vastly diminished. The clearance
curve now follows the trajectory of the sensitive clone
(Figure 1B). From clearance curves alone, it is impossible
to tell that the patient in Figure 1B is harboring resistant
parasites and potentially transmitting those parasites.
Current approaches may therefore underestimate the
scale of the drug resistance problem.

Capitalizing on within-host diversity with next
generation approaches
We propose that, rather than being an obstacle to identi-
fying drug resistance in individual patients, the within-
host diversity of infections can instead be exploited to
detect it. When drug treatment is applied to mixed infec-
tions, clones with any degree of resistance will rise in
frequency in the parasite population within that host.
Even weakly drug tolerant clones will become more fre-
quent because fully susceptible parasites will be cleared at
faster rates. Thus, an increase in the frequency of any
clone-specific genetic marker is indicative of up-selection
by drugs of a tolerant or resistant clone in a sea of suscep-
tible parasites. The critical requirement for identifying
such a change in frequency is a detection technique that
can quantify the relative abundance of different clones and
be sufficiently sensitive to detect rare variants in a mixed
population. Next generation sequencing (NGS) technolo-
gies, when they are used to deeply sequence a single highly
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Figure 1. Clearance curves of diverse infections. Predicted clearance curves of
sensitive (black) and resistant (red) parasite clones in hypothetical infections after
drug treatment is initiated (ignoring any possible lag or tail phases [24,27]). The
blue line shows the clearance curve that would actually be measured for an
individual patient using standard approaches (i.e., it shows the change in the total
parasite density over time). Initial frequencies of the resistant clone are (A) 50%
and (B) 0.5%. Half-lives for sensitive and resistant clones are taken from [2] (3.7 h
and 6.2 h, respectively). Despite harboring resistant parasites in both cases, the
infection in (A) appears resistant whereas in (B) it appears sensitive.
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polymorphic region hundreds or thousands of times in a
single infection, can do this. The incredible scale and high
resolution of the data generated through these technolo-
gies have exposed the true (and vastly underestimated)
within-host diversity of malaria infections [30,39–42] and
prevalence of rare drug-resistant variants in HIV infec-
tions (e.g., [43–46]). Using these same deep sequencing
tools to detect drug resistance in malaria infections, as well
as quantify the extent and magnitude of that resistance, is
the next logical step.

With longitudinal samples, including a pretreatment
sample and perhaps as few as one subsequent sample at
least one replicative cycle later, deep sequencing can
generate a picture of how individual parasite variants
respond to drug treatment. This approach, which we refer
to as the ‘selection differential’ approach because that is
what is being estimated [47], provides access to those
clone-specific parasite clearance curves that are unob-
tainable with current tools. Revisiting the hypothetical
patients described in Figure 1, if deep sequencing was
used to quantify the relative abundance of different clones
in place of tracking parasite densities, a clear signature of
drug resistance would emerge regardless of whether the
resistant variant was initially at a high or low frequency
(Figure 2). Importantly, identifying drug resistance with
deep sequencing does not require knowing (or sequenc-
ing) the molecular markers of resistance. Instead, the
phenotype of resistance can be seen – slower clearance,
increasing relative abundance – by sequencing any coding
region that is highly polymorphic. Because parasite re-
combination does not occur within human hosts, such a
gene region is in essence a clone-specific marker. The
ability to detect all of the variants in an infection, and
hence the power of the method, will depend on the poly-
morphism of the gene region targeted; a high degree of
polymorphisms allows for a relatively rare resistant clone
to be exclusively represented by one or a few alleles
within an individual infection.

The selection differential approach offers several advan-
tages as a tool to detect drug resistance. First, what we
propose is a short-term test (perhaps just two or three
replicative cycles) meaning that even if a parasite variant
is below the limit of detection in a pretreatment sample
(e.g., if sequencing is not sensitive enough to detect a
variant at 0.05%, as depicted in the left panel of
Figure 2B), it would be highly unlikely that its detection
in a subsequent sample would be due to a reinfection or
relapse. Second, what we propose should in principal be
feasible with as few as two blood samples from patients,
although certainly more power will be garnered by addi-
tional time points, and these may be necessary if lag
phases are a parasite genetic effect. Finally, what we
propose is intrapatient, meaning that all patient-specific
variables (such as immune status, coinfection, drug up-
take, compliance, dosing, drug quality, etc.) are held con-
stant while the clearance rates of individual parasite
clones within that patient are investigated. Although re-
cent studies have reported that a substantial amount of the
variation in the clearance times is attributable to parasite
genetics [2,48], some of it is not. Our approach therefore
accounts for more of this variation.

Next generation challenges
Using deep sequencing for early detection of drug resis-
tance is not without its own challenges (Box 1). Chief
among these is discriminating real changes in the relative
abundance of different parasite variants over time from
noise. Accurate characterization of variants within an
infection and quantification of the relative abundance of
those variants are key for inferring drug resistance from
the changes that occur over the course of treatment. But
deep sequencing is error-prone and observation error will
always muddle attempts to characterize a large parasite
population based on a small sample. In a forthcoming
article, we develop statistical methods to analyze the type
and quality of data involved and use these to provide
estimates of the power of the approach to detect low
frequency and low level resistance. In Box 2, we illustrate
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Figure 2. The phenotypic signature of drug resistance. Relative abundance of
drug-sensitive (black) and -resistant (red) parasites before and after drug treatment
of hypothetical infections in Figure 1. Half-lives are as given in Figure 1, and initial
frequencies of the resistant clone are again (A) 50% and (B) 0.5%. In both cases, the
relative abundance of the red parasite variant dramatically increases after drug
treatment, indicating that it is being cleared more slowly than the black variant and
providing a striking signal of resistance. Deep sequencing can provide this type of
data on the relative abundance of parasite variants.
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the variation that can arise across technical replicates from
these sources of error and briefly describe how, by borrow-
ing tools from community ecology, this noise can in princi-
ple be harnessed to develop a null expectation and define
thresholds for inferring resistance.

Implicit in our selection differential approach is an
assumption that infections are likely to be composed of a
small number of drug-resistant parasites in a sea of sensi-
tive ones. This may not be the case in regions of Southeast
Asia where resistance to artemisinins is emerging and
where the data suggest that the majority of infections
harbor a single clone (e.g., [2]). In those cases, our approach
is irrelevant because parasite clearance curves do an ade-
quate job (recall Figure 1A). However, if and when resis-
tance spreads to high transmission settings in Africa

(where vigilance and early detection are especially impor-
tant [49]), resistant parasites are likely to occur in mixed
infections. Indeed, several studies looking for known resis-
tance mutations (i.e., resistance to non-artemisinin drugs)
have found parasites harboring those mutations commonly
occurring in mixed infections with wild type parasites (e.g.,
[34,50–52]). A further wrinkle comes from recent work that
shows that mixed genotype Plasmodium falciparum infec-
tions tend to be composed of closely related parasites [53],
and this could mean that resistant parasites often share an
infection with other resistant parasites. If so, similarly
resistant parasite variants in an infection would be cleared
at the same rate, so the relative abundance of those
variants would not change. Our proposed approach would
fail to identify infections with resistance at high frequency,

Box 1. Technological challenges

Next generation sequencing of malaria parasites has been used to
quantify and track the clonal diversity within individual infections
[30,41,42], to examine diversity and population genetic patterns at the
whole parasite population level (among hosts in a given region; [39–
41]), and to correlate population genetic patterns with resistance
phenotypes [58]. These studies represent a combination of whole
genome and amplicon sequencing approaches, and each has its own
challenges. For studies using whole genome sequencing [41,42,58],
relatively large amounts of DNA are required. This necessitates
collection of large volumes of whole blood, cold storage of samples
between the field and the laboratory, filtering of samples to remove
host white blood cells, and, sometimes, short-term in vitro culturing
to increase parasite numbers (and DNA) [59,60]. The key challenges
for whole genome sequencing studies, then, occur at the sampling
and sample-processing end of the pipeline. In addition, when used for
studying multi-clone infections, whole genome sequencing provides
limited depth and short reads, both of which limit the ability to study
variants occurring at low frequencies.

These challenges are less of a problem for amplicon sequencing,
the approach that we are advocating. Less DNA is required for
amplicon sequencing [30,39,40], and sufficient volumes can be

obtained directly from blood spots on filter paper, which require
desiccation rather than refrigeration for storage. Because amplifica-
tion of a target locus by PCR is performed, large blood samples and
filtering of host white blood cells are unnecessary [61]. However, this
PCR step also has the potential to introduce base pair substitutions
due to polymerase errors and, more challenging, chimeric se-
quences due to incomplete primer extension on one haplotype
followed by completion of extension on another (PCR-mediated
recombination; e.g., [62]). Such chimeras are likely to be a significant
contributor to the noise described in Box 2. These issues shift the key
challenges with amplicon sequencing towards the bioinformatics
and sequence-processing end of the pipeline. Computational tools
have been developed to deal with chimeras and other PCR-
introduced artifacts (e.g., [63–65]), but these have so far been
restricted to making assignments in clonal populations or at higher
taxonomic levels (i.e., genus level). For sexually recombining
organisms such as malaria, chimeras and true recombinants lack a
priori distinguishing features. For now, studies try to circumvent
these problems by using stringent criteria for calling variants, for
example, by requiring a variant to occur in multiple technical
replicates, as in [39].

Box 2. Quantifying resistance through noise

In a recent study [39], DNA was extracted from single blood spots from
100 individual malaria patients prior to receiving treatment, and then
divided into two for PCR and sequencing. An approximately 250-bp
region of the highly polymorphic Plasmodium falciparum csp gene was
amplified, and the amplicon product was sequenced on the Roche 454
platform. For each replicate sample from individual patients, reads
were clustered into parasite variants (haplotypes). Based on control
sequencing, the authors required that a variant be at a frequency of at
least 1% and occur in both replicates before being considered a true
variant for their analysis. Here, we include all initially called variants in
each replicate regardless of their frequency or reproducibility to provide
a maximal estimate of noise. Figure IA shows the relative abundance of
variants, as estimated in the two technical replicates, for two patients
(labeled 1111 and 1128) before treatment. Most of the 100 patients
generate graphs that look like patient 1111, that is, the frequency of
variants is relatively reproducible across replicates. For a minority of
patients (fewer than 10), the pattern looks more like patient 1128, with
large shifts in frequency across replicates. No systematic underlying
cause of these shifts could be determined and all samples passed
sequencing quality control cut-off values [39]. The dark blue variant in
patient 1128 undergoes precisely the sort of change expected for a
drug-resistant parasite during treatment. If such patterns can arise due
to noise across a single time point, how can one be sure that the same
pattern across time points indicates resistance?

With such technical replicates from pretreatment sampling, one can
generate a null expectation against which to compare changes that

occur over the course of treatment. Useful metrics can be adapted
from community ecology where measures of dissimilarity are used to
compare species assemblages (e.g., the Bray–Curtis and Manhattan
measures; see [66–69] for overviews). For example, for each variant
within a patient, the distance of the point given by the two
pretreatment frequency estimates of that variant to the expected 1:1
line can be calculated. We define d0 as the sum of the distances of all
variants within a patient:

d0 ¼
1ffiffiffi
2
p
Xn

i¼1

""""p
1
0;i " p2

0;i

""""

for a patient harboring n variants, where the pretreatment frequency of
the ith variant is estimated as p0,i (the superscript denotes the technical
replicate). In Figure IB, we illustrate this approach for the two repre-
sentative patients. Calculating d0 for each of the 100 patients in [39]
gives rise to the distribution of d0 values in Figure IC; this represents
our null expectation against which we could compare the distance of
the points in a pre- versus post-treatment frequency plot to the 1:1 line.
If drug treatment changes the relative abundance of parasite variants
due to the presence of resistant variants, then the points in this plot will
lie farther from the 1:1 line. Specifically, if

dT ¼
1ffiffiffi
2
p
Xn

i¼1

""""p0;i " pT ;i

""""

where pT,i is the post-treatment frequency estimate of the ith variant,
then we expect dT to lie outside of the distribution of d0.
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but this is not what our approach aims to do – again,
clearance curves do an adequate job in this case. And,
because all de novo mutations for resistance necessarily
begin in a mixed infection, if de novo resistance is a
significant source of treatment failure then our approach
provides a method to detect these resistant variants as
soon as they appear.

Our approach assumes that parasites in drug-treated
infections follow the log-linear clearance curves discussed
earlier, but a number of biological processes could qualita-
tively alter these patterns of decline. For example, what if
there are multiple parasite cohorts with 48-h cycles that are

offset by a day? What happens if parasite variants within an
infection vary in their cell cycle duration? In the first case,
daily sampling to capture each cohort over a full replicative
cycle should solve the multiple cohort problem. In the second
case, it is not yet clear how variation in cell cycle duration
would affect estimates of the relative abundance of variants
over the course of drug treatment. Assuming it affects drug-
sensitive and drug-resistant parasites equally, then this
complexity would be captured in any null distribution
(Box 2). But, if drug resistance is a function of this complexi-
ty, for example, if resistance is mediated by changes to cycle
length (as has been suggested, e.g., [54]), then the situation
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Figure I. Noise and the summed distance metric. (A) Relative abundance of parasite variants, as determined by 454 sequencing of an approximately 250-bp region of the
P. falciparum csp gene, from two representative patients [39]. For each patient, the relative abundances have been estimated twice (technical replicates, R1 and R2).
Within patients, each color represents a unique parasite variant. (B) Plotting these frequencies in a different way reveals a metric for quantifying noise. Here, each point
represents the two estimates of frequency for an individual parasite variant. The broken lines indicate the distance to the 1:1 line, and the d0 value gives the sum of these
distances for all variants within a patient. If technical replicates were perfectly repeatable, all points would lie along the 1:1 line and d0 would be 0. (C) The distribution of
d0 values calculated from all 100 patients in [39], as well as a fitted exponential curve (red; l = 11.8). The broken lines indicate the values of d0 below which 95%, 99%, or
99.9% of the fitted distribution lies (equivalently, dT values above these cut-off values are expected to occur less than 5%, 1%, or 0.1% of the time by chance alone).
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may be more complicated and mechanistic modeling of
within-host processes could shed light on how this would
affect measures of change. Our selection differential ap-
proach could also be constrained if drug treatment results
in parasite densities below the threshold required for se-
quencing before a post-treatment sample is taken. With a
better understanding of the noise and limits of sequencing
data, it will be possible to quantify the parameter space
(level and frequency of resistance) over which our approach
is robust.

Finally, selection pressures beyond those imposed by
drug treatment may be acting in infections. This means
that the relative abundance of different parasite clones will
change for reasons other than differential sensitivity to
drugs (e.g., differential susceptibility to antigen-specific
immune responses) and may obscure the selective effects
of drugs. Understanding the scale of the changes in re-
sponse to these other pressures could be achieved with
longitudinal samples of untreated asymptomatic infections
or with pre- and post-treatment samples from patients in
areas where resistance is currently thought to be absent.
This additional source of noise could also be built into the
null expectation (Box 2). It is our speculation that selection
in response to drugs will overwhelm other evolutionary
forces such as selection via biased parasite killing by the
immune system. For example, in experimental rodent
malaria infections, which are more rapidly contained
and cleared than human infections, all immune responses
(specific and nonspecific) have been estimated to kill 85% of
parasites per day at maximum efficiency and less than that
throughout much of the infection [55]. It is unclear how
much of that immune killing is strain-specific, but even the
maximum of 85% equates to a parasite reduction ratio of
approximately ten, two to four orders of magnitude lower
than what has been estimated for the efficacy of artemi-
sinins [25]. This suggests that drug selection has the
potential to overwhelm strain-specific immune selection,
but further data (or mechanistic modeling) is needed to

understand the magnitude of selection differentials that
can be generated through immunity alone (Box 3).

Concluding remarks and future perspectives
The introduction of NGS technologies brought with it the
promise of allowing researchers to ‘follow the evolution
of. . .resistance in real time’ [56]. The data generated from
these technologies should allow us to see the up-selection of
drug-resistant parasites within individual infections. In-
deed, deep sequencing has been used, for example, to follow
the dynamics of known resistance mutations in HIV infec-
tions [57]. Yet, as we have argued, these technologies have
a much broader utility, allowing for the dynamics of resis-
tance to be tracked even when genetic resistance mecha-
nisms have yet to be discovered.

The selection differential approach will in principle
permit the most rapid diagnosis of resistance in malaria
infections, with the fewest possible blood samples, and the
best possible accuracy (bypassing issues of reinfection and
relapse). Further, by allowing previously undetectable
resistant parasites to be identified, these tools—in addition
to contributing to surveillance and monitoring programs—
could feed samples and data into studies seeking to identify
genetic markers and pathways of resistance. Alternatively,
with candidate mutations identified, the selection differ-
ential approach could be adapted to determine whether
candidate resistance alleles are indeed being up-selected
during drug treatment. Finally, should the costs and the
turnaround time of the sequencing technology continue to
decrease, it could in theory be possible to use this approach
to identify individual patients who will not respond to
treatment, giving clinicians an opportunity to change
treatment regimens or partner drugs before clinical failure
occurs. This would have the benefit of not only improving
patient health but also removing the drug-specific selection
pressure on those parasites.
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Box 3. Outstanding questions

# How well do different sequencing platforms estimate the relative
abundances of known mixtures? Given this noise, how rare could
a resistant clone be in an infection and still be detected using the
selection differential approach?

# What magnitude of change in relative abundances can be
generated through immune selection alone, that is, how effective
at killing parasites are clone-specific immune responses? On what
timescale are these changes observable?

# How does sampling and sequencing parasites at different stages
in their replicative cycle affect estimates of relative abundance?

# How much variation in cell cycle duration is there among the
parasites within an infection?

# If there is variation in cell cycle duration, and the stage of sampled
parasites affects estimates, what sampling regime could provide a
meaningful picture of the relative abundance of clones?

# Does residual DNA from dying or dead parasites contribute to
estimates of relative abundance from deep sequencing?

# Are the lag phases in parasite clearance curve a host effect (e.g.,
drug metabolism) or a parasite effect (e.g., parasite subpopula-
tions that are inaccessible to drugs) [24]? If lags are parasite
effects that are unrelated to drug sensitivity, how many more
samples would be needed to rule out changes in relative
abundance due to different lengths of lag phases?
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