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A significant goal of recent theoretical research on pathogen evolution has been to develop theory that bridges within- and

between-host dynamics. The main approach used to date is one that nests within-host models of pathogen replication in models

for the between-host spread of infectious diseases. Although this provides an elegant approach, it nevertheless suffers from

some practical difficulties. In particular, the information required to satisfactorily model the mechanistic details of the within-host

dynamics is not often available. Here, we present a theoretical approach that circumvents these difficulties by quantifying the

relevant within-host factors in an empirically tractable way. The approach is closely related to quantitative genetic models for

function-valued traits, and it also allows for the prediction of general characteristics of disease life history, including the timing of

virulence, transmission, and host recovery. In a companion paper, we illustrate the approach by applying it to data from a model

system of malaria.
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Studies of the dynamics of infectious diseases are complicated
by the fact that there are at least two different scales on which
important processes occur (Levin and Pimentel 1981; Levin and
Bull 1994; Nowak and May 1994; van Baalen and Sabelis 1995;
May and Nowak 1995; Frank 1996). First, pathogen replication
and interactions with host resources and host defense mecha-
nisms occur within individual hosts. These dynamics govern the
extent to which the pathogen is transmissible, as well as the pe-
riod of time over which the infection persists. Second, pathogens
spread between hosts. It is the dynamical processes occurring at
the population level that govern whether the pathogen can per-
sist in the host population as a whole. These two levels of bio-
logical organization are clearly linked, because the within-host
dynamics strongly influence the extent of pathogen transmission

between hosts. In some cases the between-host dynamics can
feed back to affect the within-host dynamics as well (Mideo et al.
2008).

A significant goal of recent theoretical research on pathogen
evolution has been to develop theory that bridges these two scales
of biological dynamics. From a mathematical standpoint, there
is a relatively straightforward way in which this can be done
(reviewed in Mideo et al. 2008). First an epidemiological model
that tracks age of infection is developed. Models that keep track of
infection age allow transmission rate, pathogen-induced mortality
rate, and host recovery rate to vary over the course of an infection
(Hethcote 2000). Then, a model for the within-host dynamics
of the pathogen is developed, and this model is nested within
the between-host epidemiological model by specifying how the
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within-host dynamics of the pathogen, host defense mechanisms,
and/or host resources affect the transmission, virulence, and re-
covery rates as a function of infection age (Sasaki and Iwasa 1991;
Day 2001; Gilchrist and Sasaki 2002; Ganusov et al. 2002; André
et al. 2003; Alizon and van Baalen 2005; André and Gandon 2006;
Gilchrist and Coombs 2006; Coombs et al. 2007; Alizon and van
Baalen 2008; Mideo et al. 2008).

The above approach yields a model that links the dynam-
ics occurring at each of the two relevant scales, and such nested
models can then be used to model pathogen evolution. The most
commonly used technique for this purpose is an evolutionary
invasion analysis. Once a resident pathogen has reached some
form of endemic equilibrium, a mutant pathogen strain is in-
troduced that differs from the resident in some the parameters
affecting its within-host dynamics. This difference in parameter
values will result in a pattern of transmission, virulence, and re-
covery during the infection that differs from that of the resident.
As a result, the mutant pathogen strain will thereby display differ-
ent epidemiological dynamics at the level of the host population,
and this will determine its ability to invade. The primary goal of
this analysis is to determine the evolutionarily stable pathogen
strain.

The above approach is a very elegant theoretical solution for
bridging scales of dynamics in models of pathogen evolution, but
it suffers from some practical difficulties. Chief among these is
that the information required to employ this approach is typically
not available for the vast majority of infectious diseases of inter-
est. For most pathogens, the mechanistic details of the within-host
dynamics, and how genetic variation among pathogen strains af-
fects these dynamics, are simply not yet known. Consequently,
it is usually not yet possible to build the appropriate within-host
model that is required.

In this article, we consider how to circumvent the above prob-
lem, and develop theory that bridges these two scales of biological
organization without requiring a mechanistic understanding of the
within-host dynamics. One main interest in models such as those
described above is to make predictions about the evolution of
disease life histories (i.e., the pattern of transmission, mortality,
and recovery as a function of infection age; Day 2003). Math-
ematically, this amounts to making predictions about the evolu-
tion of function-valued traits (Kirkpatrick and Heckman 1989;
Dieckmann et al. 2006; Parvinen et al. 2006). Roughly speaking,
in the absence of coinfection, the epidemiological dynamics at
the level of the host population determines the strength and direc-
tion of selection on these function-valued traits. The details of the
within-host dynamics, and how genetic variation among pathogen
strains affects these dynamics, then determines the constraints on
the kinds of functions that can evolve. Our approach is motivated
by that of Kirkpatrick and Heckman (1989) in quantitative ge-
netics. Specifically, rather than characterizing these constraints

in terms of the mechanistic details of the within-host dynamics,
we show how they can be adequately characterized via genetic
covariance functions measured at the level of the host. In a com-
panion paper, we illustrate the application of this approach to data
from a model system of malaria (Mideo et al. 2011).

Development of the Modeling
Approach
Our model combines ideas from mathematical ecology (Metz and
Diekmann 1986; Gyllenberg and Hanski 1992) with results that
come from applying concepts from theoretical population genet-
ics to epidemiological models (Day and Proulx 2004; Day and
Gandon 2006, 2007). Throughout this article, we suppose that
each host can be infected by, at most, a single pathogen strain.
Consequently, the results cannot be used to model the evolution of
diseases such as HIV, for which infection with multiple genotypes
and subsequent within-host evolution is common. In a future arti-
cle, we will extend the results to account for multiple infections.

The approach presented here can be adapted to a variety of
epidemiological settings but we focus on a very simple model to
illustrate the technique. Suppose we have a single class of infected
individuals that is structured by age of infection. Specifically, we
use Ii(a, t) to denote the number of hosts who are infected with
strain i, and whose infection began at time t − a (i.e., a de-
notes the “age of infection”). The quantities Ii(a, t) will change
through time, and quite generally we model these dynamics us-
ing the Mckendrick-von Foerster equation (McKendrick 1926;
Hoppensteadt 1974) as

∂ Ii (a, t)
∂t

= −∂ Ii (a, t)
∂a

− Di (a, t)Ii (a, t) (1)

with boundary condition Ii(0, t) =
∫ ∞

0 Bi(a,t)Ii(a,t)da
(Appendix A). Here Bi(a, t) is the per capita rate at which new
infections with strain i are created, and Di(a, t) is the rate at which
such infections end, either through host death or recovery. Both
depend on the age of infection, and they might also depend ex-
plicitly on time. For example, the function Bi(a, t) will typically
depend explicitly on time in epidemiological models because the
rate of generation of new infections will depend on the density
of susceptible hosts, and this will typically vary through time
according to the epidemiological dynamics.

Now suppose that both Bi and Di are determined by a
function-valued trait that is expressed in infected individuals, and
denote this trait by τi(a) (Appendix A). For concreteness, suppose
that τi(a) represents the density of pathogen within the host, as a
function of infection age. Within-host pathogen density will often
affect pathogen transmission rate between hosts as well as host
mortality and/or recovery rate, and therefore it is reasonable to
expect that both B and D might be functions of τ; that is, B(a, t) =
b(τ(a), t) and D(a, t) = d(τ(a), t) for some functions b(τ, t) and
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d(τ, t). Strains will differ in their function τ, and thus they will
differ in transmission rate, b, and mortality/recovery rate, d. We
note that this formulation also allows for some forms of host
heterogeneity and other factors that can influence B and D (e.g.,
stochasticity in inoculum size), in addition to pathogen geno-
type. For simplicity, we ignore these effects in the main text, but
Appendix E illustrates how they enter into the calculations.
Roughly speaking, in such cases we can simply view Bi and
Di as the average birth and death rates of infections with geno-
type i, where the average is calculated over the distribution of
heterogeneity in question.

Defining qi(a, t) as the fraction of hosts infected with strain i
that are of infection age a at time t, the evolution of the mean value
of τ, as a function of infection age, is described by (Appendix B)

˙̄τ(a, t) = cov[τi (a), r̃i (t)]. (2)

Here

r̃i (t) =
∫ ∞

0
b(τi (s), t)qi (s, t)ds −

∫ ∞

0
d(τi (s), t)qi (s, t)ds,

(3)

which is the per capita rate of change of hosts infected with strain i
at time t, averaged over all infection ages (i.e., the fitness of strain
i at time t). Throughout we use a “tilde” to denote an average over
infection ages, and an “overbar” to denote an average over strains.

Equation (2) reveals the familiar result (Price 1970) that the
rate of evolutionary change of the mean value of any trait (in
this case the mean within-host pathogen density at infection age
a; i.e., τ̄(a, t)) is determined by the covariance between the trait
and fitness. Using equation (3), we can write equation (2) more
explicitly as

˙̄τ(a, t) =
∫ ∞

0
Gτ,bq (a, s; t)ds −

∫ ∞

0
Gτ,dq (a, s; t)ds, (4)

where Gx,y(a, s; t) = cov[xi(a), yi(s)] is the covariance between
function x at infection age a and function y at infection age s
over the distribution of all pathogen strains in the population at
time t. Thus, the evolutionary dynamics of the average within-host
pathogen density at infection age a (i.e., τ̄(a, t)) is composed of
two parts: (1) the covariance between the within-host pathogen
density at infection age a and the realized production of new infec-
tions at infection age s, b(τ(s), t)q(s, t), summed over all infection
ages, s; (2) the covariance between the within-host pathogen den-
sity at infection age a and the realized loss rate of infected hosts
at infection age s, d(τ(s), t)q(s, t), summed over all infection
ages s.

Equation (4) applies quite generally, but considerably more
progress can be made if we restrict attention to the case where
the distribution of infection ages stabilizes quickly relative to the
time scale on which the vital rates, B(a, t) and D(a, t), change.

This would require, for example, that the duration of an indi-
vidual infection is short relative to the timescale on which these
rates change. In this case, the time dynamics of qi(s, t) can be
expected to reach a quasi-equilibrium value before much change
in either B(a, t) or D(a, t) occurs, and we can approximate the
per capita rate of change given in (3) by substituting in this quasi-
equilibrium infection age distribution (Lande 1982; Kirkpatrick
and Lofsvold 1989, 1992). Denoting this approximate value for
strain i by ρ[τi](t), equation (3) then simplifies to the Euler–Lotka
equation (Appendix C)

1 =
∫ ∞

0
e−aρ[τi ](t)e−

∫ a
0 d(τi (s),t)dsb(τi (a), t)da. (5)

The square bracket notation ρ[τi](t) indicates that ρ is a
scalar-valued operator on a function space (i.e., a functional),
which is implicitly defined by equation (5). Also notice that, al-
though the per capita rate of change is approximated using the
quasi-equilibrium values of qi(s, t), it is still a function of time
because the vital rates B(a, t) and D(a, t) in equation (5) are
still functions of time. The quasi-equilibrium assumption simply
means that the timescale on which these vital rates change is much
longer than that on which qi(s, t) changes. Substituting this into
expression (2) gives

˙̄τ(a, t) = cov[τi (a), ρ[τi ](t)]. (6)

The operator ρ[·](t) is a nonlinear functional, meaning that
fitness depends, in a nonlinear way, on the function-valued trait,
τ(a). If the genetic variation in the pathogen population is not too
large, however, then equation (6) can be approximated as

˙̄τ(a, t) ≈
∫ ∞

0
φ(s, t ; τ̄)Gτ,τ(a, s; t)ds, (7)

where φ(s, t ; τ̄) is the selection gradient on trait τ at infection age
s and time t (Appendix D; Gomulkiewicz and Beder 1996; Beder
and Gomulkiewicz 1998) and Gτ,τ(a, s; t) is the autocovariance
in trait τ between infection ages a and s. At a conceptual level,
the selection gradient in equation (7) is simply the derivative of
the fitness function with respect to the trait of interest, evaluated
at the population mean trait value. Formally, it is the kernel of the
linear integral operator representing the Fréchet derivative of the
functional, ρ[·](t), evaluated at the population mean function, τ̄

(Appendix D).
Model (7) is analogous to that derived by Kirkpatrick and

Heckman (1989) and Kirkpatrick and Lofsvold (1992) in quan-
titative genetics. The underlying assumptions in the derivation
of (7) are, however, somewhat different. First, model (7) is not
based on an assumption of Gaussian distributions of genotypes or
phenotypes, but rather it allows for any discrete genotype distri-
bution so long as the genetic variance is relatively small. Second,
model (7) is derived in the context of an explicit ecological (in
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this case epidemiological) model for the population dynamics.
As a result, the fitness of different genotypes (as represented by
the selection gradient, φ(s, t ; τ̄)) is not an arbitrary, externally
imposed component of the model. Rather, it is an emergent prop-
erty of the underlying epidemiological dynamics. In other words,
the selection gradient in this context is not an input that one
explicitly specifies for the model, but instead is an output of the
epidemiological dynamics. It is through this selection gradient that
the evolutionary dynamics are linked to the epidemiological dy-
namics. That is the reason why the selection gradient depends on
time, t.

Equation (7) has a useful interpretation. The selection gradi-
ent specifies how the epidemiological dynamics give rise to se-
lection on the within-host pathogen density at each infection age,
whereas the autocovariance function specifies how the within-
host pathogen density at infection age a is genetically correlated
with the density at infection age s. Therefore, according to (7),
the within-host pathogen density at infection age a will evolve
through direct selection acting at this age, as well as through
indirect selection acting on the density at other infection ages,
mediated by any genetic covariance between them.

The form of equation (7) for the evolutionary dynamics of
the within-host pathogen density, τ, reveals how this modeling
approach circumvents the needs for mechanistic knowledge of
the within-host dynamics. All we need to know is the pattern of
autocovariance in within-host pathogen density across infection
ages. This can be estimated from measurements of the within-
host density, without any reference to the mechanistic processes
that gave rise to this covariance (see Mideo et al. 2011). At the
same time, however, if we did know enough about the within-host
dynamics, then we could still employ model (7) by simply using
a model for the within-host dynamics to derive the resulting auto-
covariance structure. Below we consider examples that illustrate
each of these possibilities.

Examples
We illustrate the utility of model (7) by focusing on a very simple
Susceptible-Infected-Recovered (SIR) epidemiological model. In
the first subsection, we consider the evolution of a single function-
valued trait representing the within-host pathogen density, as a
function of infection age. In the second subsection, we consider
the evolution of disease life histories more generally, by allowing
for the evolution of multiple function-valued traits.

(1) EVOLUTION OF WITHIN-HOST PATHOGEN DENSITY

PROFILES

Consider a simple SIR model (Hethcote 2000) and assume that
the epidemiological dynamics of infected hosts is given by
equation (1). Suppose that there is a constant influx of suscepti-

ble individuals at rate θ, that all individuals suffer a constant per
capita mortality rate of µ, and that pathogen transmission occurs
according to the law of mass action with rate that depends on the
within-host pathogen density at each infection age. Further, sup-
pose that the virulence and recovery rate of infected individuals at
any given infection age is independent of pathogen strain. Using
S(t) and R(t) to denote the number of susceptible and recovered
individuals at time t, we have

dS(t)
dt

= θ − µS(t) −
∑

i

∫ ∞

0
β
(
τi (a)

)
S(t)Ii (a, t)da (8a)

dR(t)
dt

=
∑

i

∫ ∞

0
γ(a)Ii (a, t)da − µR(t), (8b)

where i indexes pathogen strain. In terms of the general model in
the preceding section, we have b = β(τ(a))S(t) for some function
β(τ), and d = γ(a) + v(a) + µ. The quantity v(a) represents the
pathogen-induced mortality rate at infection age a (i.e., virulence;
Day 2002b), and the function γ(a) is the recovery rate at infection
age a. We stress, however, that both virulence and recovery rate
are assumed to be independent of within-host pathogen density,
and thus independent of strain type. Thus, evolutionary change in
the within-host pathogen density profile results in a change in the
transmission profile but not virulence or recovery rate.

Substituting the above expressions for b and d into
equation (5), and calculating the selection gradient, φ(s, t ; τ̄) (i.e.,
the kernel of the Fréchet derivative of ρ[τ](t) with respect to τ,
and evaluated at τ̄), gives

φ(s, t ; τ̄) = q(s, t)
k(t)

β′(τ̄(s)
)
S(t), (9)

where k(t) =
∫ ∞

0 ab(τ̄(a), t)e−aρ[τ̄](t)l(a)da/
∫ ∞

0 e−aρ[τ̄](t)l(a)da,
where l(a) = e−

∫ a
0 d(τ̄(h))dh (Kirkpatrick and Lofsvold 1989). Note

that k(t) = b̃a where recall, b̃a is the expectation of ba over the
distribution q(a, t). Thus, k(t) is a combined measure of transmis-
sion and generation time of infections. Roughly speaking, k(t) is
large when the product of the rate of generation of new infections
and the generation time is large. We note that k(t) can also be
written as k = q0T , where T =

∫ ∞
0 ab(τ̄(a), t)e−aρ[τ̄](t)l(a)da is

the average age of the “parents” of all new infections at time t
(i.e., the generation time), and q0 =

∫ ∞
0 e−aρ[τ̄](t)l(a)da.

Substituting (9) into (7) then gives the evolutionary dynamics
of τ as

˙̄τ(a, t) ≈ 1
k(t)

∫ ∞

0
q(s, t)β′(τ̄(s)

)
S(t)Gτ,τ(a, s; t)ds. (10)

The selection gradient in (10) shows that increased within-host
pathogen density is always favored (we assume that β′ > 0),
and in a way that is proportional to the density of susceptible
hosts. A large density of susceptible hosts selects more strongly
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for higher within-host density because transmission is evolution-
arily more valuable in this case. The strength of selection for
increased transmission is weaker at late infection ages, however,
because a smaller fraction of the population is actually exposed
to this selection. This is reflected by the fact that the selection
gradient is also proportional to the fraction of the infected pop-
ulation at each infection age, q(s, t). Also, evolutionary change
in within-host pathogen density (and thus transmission) at each
infection age is not independent of its evolution at other infec-
tion ages because of genetic autocorrelation in pathogen density
across infection ages, as described by the autocovariance func-
tion Gτ,τ(a, s; t). Finally, the quantity 1/k(t) scales the rate of
evolution.

In the absence of any negative genetic autocovariance (i.e.,
no trade-offs in transmission across infection ages), equation (10)
predicts a perpetual evolutionary increase in within-host pathogen
density and thus transmission at all infection ages. This is a fa-
miliar result from previous theory. If transmission rate is the only
epidemiological quantity that is affected by pathogen genotype,
then transmission will evolve to ever larger values.

The genetic autocovariance across infection ages will typ-
ically not be zero, however, because the within-host pathogen
density is typically not independent from one time to the next,
across pathogen strains. In this example, we will suppose that
we know enough about the within-host dynamics to build an ap-
propriate model for this, and we illustrate how the theory can be
applied in this case. In fact, for illustrative purposes, we will con-
sider three different within-host models to better convey how the
mechanistic details of within-host dynamics are linked to patterns
of autocovariance at the level of an infection.

The first model assumes that pathogen replication is con-
trolled by lymphoctyes, and that lymphocytes grow exponentially
and independently of pathogen density (e.g., André et al. 2003).
Mathematically we have

dτ(a)
da

= rτ(a) − κx(a)τ(a) (11a)

dx(a)
da

= αx(a), (11b)

where x(a) is the lymphocyte density at infection age a, r is the
pathogen replication rate, κ is a constant representing the sus-
ceptibility of pathogens to destruction by lymphocytes, and α is
the growth rate of the lymphocyte population. We assume that
pathogen strains differ in their replication rate, r, and thus model
(11) yields a different function τi(a) for each ri. An analogous
analysis could be conducted if pathogens differed in other param-
eters instead.

The pattern of autocovariance in within-host pathogen den-
sity across infection ages arising from this model is given in

Figure 1A. With this form of within-host dynamics, the autoco-
variance is always nonnegative across all infection ages—strains
with high density (and thus high transmission) at one infection age
will have high density at all ages. Thus, (10) predicts an evolution-
ary increase in within-host pathogen density at all infection ages
if this is the appropriate description of the within-host dynamics
(Fig. 1A).

The second model is a modification of (11) in which the rate
of change of the lymphocyte population is also proportional to
pathogen density (Gilchrist and Sasaki 2002):

dτ(a)
dt

= rτ(a) − κx(a)τ(a) (12a)

dx(a)
dt

= αx(a)τ(a). (12b)

Again, if we assume that pathogen strains differ in r, then we ob-
tain strain-specific functions, τ(a). Despite the seemingly simple
change in model structure, a qualitatively different pattern of au-
tocovariance is now possible (Fig. 1B). It is no longer the case that
strains can be ranked by their within-host densities at all infection
ages. Rather, strains that have high density early in an infection
have low density late in an infection and vice versa. As a re-
sult, the autocovariance changes sign across infection ages, mean-
ing that there is a tradeoff between early and late transmission.
Equation (10) therefore predicts that the pattern of evolution will
differ depending on the relative strength of selection at different
infection ages. When the number of infected individuals is in-
creasing or constant, the infection age distribution, q(s, t), will
be skewed toward young infection ages. This places most of the
“evolutionary weight” in (10) on early infection ages, and thus the
trade-off results in evolution favoring strains with earlier trans-
mission over late (Fig. 1B). Conversely, if the number of infected
individuals is decreasing for a sustained period of time, then the
infection age distribution will be skewed toward older infection
ages. Selection then favors strains with late transmission over
those with early transmission (results not shown).

Finally, the third model alters the immunological dynamics
in yet a different way, and assumes that the lymphocyte population
increases at a rate that is proportional to the pathogen density, but
that is independent of the lymphocyte population. Lymphocytes
are also assumed to decay at a constant per capita rate of ν (e.g.,
Alizon and van Baalen 2005):

dτ(a)
dt

= rτ(a) − κx(a)τ(a) (13a)

dx(a)
dt

= ατ(a) − νx(a). (13b)

This model can display periodic waves of high pathogen density
that ultimately stabilize to a nonzero equilibrium level (Alizon
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Figure 1. Continued.
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and van Baalen 2005). The phase of these oscillations changes
with the parameters of the model, and as a result, the sign of the
autocovariance across infection ages can also display a periodic
pattern (Fig. 1C).

As with the second model, we obtain different evolution-
ary outcomes depending upon the relative strength of selection
at each infection age (which is determined by the infection age
distribution, q(s, t)). Furthermore, because of the increased com-
plexity of this within-host model, a wider variety of disease life
histories can now evolve, depending upon the epidemiological
dynamics. As an example, Figure 1C depicts a case where the dis-
ease life history evolves to have sharp, periodic, waves of pathogen
density when the epidemic is expanding (t = 0), but that evolves to
have a constant, lower level, of pathogen density once an endemic
equilibrium is reached (t = 3000). In an expanding epidemic, most
infections are very young, and this thereby selects for very rapid
within-host growth. Such high within-host growth rates also then
result in marked oscillations in pathogen density during an infec-
tion. Once the prevalence of the disease has stabilized, however,
the infection age distribution becomes less skewed toward young
infection ages, and transmission from older infections thereby be-
comes important. This selects for slower within-host growth so
that a more consistent within-host pathogen density is maintained
at later infection ages (Fig. 1C).

(2) EVOLUTION OF DISEASE LIFE HISTORIES

The above results illustrate how within-host models can be used
to determine the autocovariance structure required for making
evolutionary predictions. In the absence of a within-host model,
evolutionary predictions can nevertheless still be made, as long
as we have an estimate of the required autocovariance structure.
In this example, we illustrate this fact, and we also show how the
above results can be readily extended to make predictions about
the evolution of multiple function-valued traits.

Suppose that transmission rate and virulence (as a function of
infection age) both differ among pathogen strains. Often we have
no information about how the within-host dynamics of pathogen

replication, host resources, and host defense mechanisms give rise
to strain-specific patterns of transmission and virulence during an
infection. In such cases, we might then consider transmission
rate and virulence to be, themselves, the function-valued traits of
interest. We would then model the evolution of both the average
transmission rate, β̄(a, t), and the average virulence, v̄(a, t), both
being functions of infection age.

To illustrate, consider a simple SIR model

dS(t)
dt

= θ − µS(t) −
∑

i

∫ ∞

0
βi (a)S(t)Ii (a, t)da (14a)

dR(t)
dt

=
∑

i

∫ ∞

0
γ(a)Ii (a, t)da − µR(t), (14b)

where i indexes pathogen strain. In terms of the general model
(1), we have b = β(a)S(t) and d = γ(a) + v(a) + µ where the
pair of functions, βi(a) and vi(a) describe the transmission rate
and virulence of strain i as a function of infection age a. Substi-
tuting these expressions for b and d into equation (5), and cal-
culating the selection gradient for multiple function-valued traits
(Appendix D) gives

φβ(s, t ; β̄, v̄) = q(s, t)
k(t)

S(t) (15a)

φv(s, t ; β̄, v̄) = −q(s, t)
k(t)

σ(s, t), (15b)

where σ(s, t) =
∫ ∞

s e−aρ[β̄,v̄](t)l(a)β̄(a)S(t)da/e−sρ[β̄,v̄](t)l(s) is the
reproductive value of an infection of age s at time t. Notice that the
strength of selection on virulence at infection age s depends, not
only on the weight of the infection age distribution at that age, but
also on the reproductive value of infections of that age. This latter
effect is absent from the selection gradient on transmission be-
cause evolutionary changes in virulence (i.e., mortality) affect re-
productive output at all future infection ages as well, whereas evo-
lutionary changes in transmission affect that infection age only.

Figure 1. Patterns of autocovariance in pathogen density, τ across infection ages, and the evolutionary dynamics of mean pathogen
density as a function of infection age, for different models. An asterisk in the covariance plots indicates the shade corresponding to a
covariance of zero (lighter=positive, darker=negative). (A) Model (11). Autocovariance plotted using two strains of equal frequency that
differ in r. Parameter values for the within-host model are r1 = 3.2, r2 = 3, and κ = 10−2, and α = 1, with initial conditions τ(0) = 1 and
x(0) = 1. Parameter values for the between-host model are θ = 10, µ = 0.01, v(a) ≡ 0.0005, γ = 0.0005 and β(τ) = 6 · 10−7τ, with initial
conditions: Ii(0, 0) = 1 and Ii(a, 0) = 0 for a #= 0, along with S0 = 100. (B) Model (12). Autocovariance plotted using two strains of equal
frequency that differ in r. Parameter values for within-host model are r1 = 3.1, r2 = 3, and κ = 1, α = 10−5, with initial conditions τ(0) =
1 and x(0) = 1. Parameter values for between-host model are θ = 10, µ = 0.01, v(a) ≡ 0.0005, γ = 0.0005, and β(τ) = 2 · 10−6τ, with initial
conditions I1(0, 0) = 1, I2(0, 0) = 10, and Ii(a, 0) = 0 for a #= 0, along with S0 = 100. (C) Model (13). Autocovariance plotted using two
strains of equal frequency that differ in ν and κ. Parameter values for within-host model are ν1 = 1, ν2 = 4, κ1 = 10−4, κ2 = 10−3.45, and r =
4.9, α = 10−5, with initial conditions τ(0) = 106 and x(0) = 1. Parameter values of between-host model are θ = 10000, µ = 0.01, v(a) ≡
0.0005, γ = 0.0005, and β(τ) = 9.5 · 10−17τ, with initial conditions: I1(0, 0) = 1, I2(0, 0) = 10 and Ii(a, 0) = 0 for a #= 0, along with S0 = 107.
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Substituting (15) into (D4) gives the evolutionary dynamics
as

˙̄β(a, t) ≈ 1
k(t)

( ∫ ∞

0
q(s, t)S(t)Gβ,β(a, s; t)ds

−
∫ ∞

0
q(s, t)σ(s, t)Gβ,v(a, s; t)ds

) (16a)

˙̄v(a, t) ≈ 1
k(t)

( ∫ ∞

0
q(s, t)S(t)Gv,β(a, s; t)ds

−
∫ ∞

0
q(s, t)σ(s, t)Gv,v(a, s; t)ds

)
.

(16b)

Model (16) reveals that the evolution of each function-valued
trait now also depends on the cross-covariance, Gβ,v(a, s; t),
between the two. For example, the first term in equation (16a)
for the evolution of the average transmission rate is the same
as that in equation (10) (except that β′ = 1 now because the
focal trait is β itself rather than τ). The second term in equa-
tion (16a) shows that there is now an additional component of
indirect selection. Selection on virulence at infection age s can
result in evolutionary changes in transmission at infection age a
if there is any genetic covariance between the two. The cross-
covariance function Gβ,v(a, s; t) describes such genetic correla-
tions, and the second integral in (16a) essentially sums up the
effects of this indirect selection on virulence across all infection
ages.

The trade-off hypothesis is a cornerstone of theory on vir-
ulence evolution, and it postulates that, despite virulence al-
ways being selected against, intermediate levels nevertheless
evolve because of a trade-off between transmission and virulence
(Anderson and May 1982; Ewald 1983; Alizon et al. 2009). In
genetic terms, the hypothesis postulates a positive genetic co-
variance between transmission and virulence—strains with high
transmission also tend to induce high virulence (Day and Proulx
2004; Day and Gandon 2006, 2007). In the context of disease life-
history evolution, however, the existence of such a trade-off (or
the lack thereof) is a more subtle issue. Both transmission rate and
virulence typically vary with infection age, and therefore describ-
ing any trade-off between the two is necessarily more complex, as
it involves quantifying a cross-covariance function across all in-
fection ages, rather than simply a single genetic covariance. More
significantly, however, the existence of an evolutionary trade-off
now depends, not only on the genetic cross-covariance structure
of the pathogen, but also on how this interacts with the epidemi-
ological dynamics.

To illustrate the subtlety of the nature of potential trade-offs,
suppose we have two pathogen strains that display the transmis-
sion and virulence patterns depicted in Figure 2A. Virulence is
constant across infection age for each strain, but transmission rate

changes in a step-fashion for each strain at infection age between
three and four. The autocovariance and cross-covariance functions
are given in Figure 2B. The cross-covariance of transmission rate
between ages zero and four with virulence at any age is zero
because there is no genetic variation for transmission between
ages zero and four. As a result, there is no trade-off across strains
between transmission at these infection ages and virulence. On
the other hand, the cross-covariance of transmission rate between
ages four and 10 with virulence at any infection age is positive
because the strain with the highest transmission rate between in-
fection ages four and 10 also induces the highest virulence at all
infection ages. Thus, there is a trade-off between transmission and
virulence if we restrict attention to infection ages later than day
four.

The above considerations suggest that if the majority of in-
fections are quite young (as will be the case in an expanding
epidemic), and evolution is determined largely by strain differ-
ences early in an infection, then virulence will evolve toward
zero because there is effectively no trade-off (Fig. 3). On the
other hand, in endemic situations (or cases where the number
of infections is decreasing) the infection age distribution will be
skewed toward later ages. Evolution will then be governed more
by strain differences late in an infection, and the presence of a
virulence-transmission trade-off at these later ages will thereby
result in intermediate levels of virulence (Fig. 3). Thus, whether an
evolutionary trade-off between virulence and transmission exists
depends on an interesting interaction between the epidemiologi-
cal dynamics and the genetic covariance structure of the pathogen
population.

Discussion
Infectious disease dynamics occur on at least two important scales:
the dynamics of within-host pathogen replication and its interac-
tion with host resources and defense mechanisms, and the dy-
namics of between-host pathogen transmission. A goal of recent
theoretical research in the evolutionary epidemiology of infectious
disease has been to bridge these two dynamical scales within a
common modeling approach. Although several interesting the-
oretical results have been developed along these lines (Sasaki
and Iwasa 1991; Day 2001, 2002b, 2002a; Gilchrist and Sasaki
2002; Ganusov et al. 2002; André et al. 2003; Alizon and van
Baalen 2005; Gilchrist and Coombs 2006; André and Gandon
2006; Coombs et al. 2007; Alizon and van Baalen 2008; Mideo
et al. 2008), integration of the results with empirical research is
still rather limited.

One reason for a divide between theoretical and empirical
research stems from the difficulty researchers face when attempt-
ing to connect models with data. For many pathogens of interest
the information required to apply the theory is simply not yet
available. This is particularly true for models that aim to connect

EVOLUTION DECEMBER 2011 3 4 5 5



TROY DAY ET AL.

Figure 2. Patterns of virulence and transmission (A) for the two strains used in the model for the evolution of disease life histories,
along with the corresponding patterns of autocovariance and cross-covariance (B). Solid and dashed lines in (A) corresponds to two
different pathogen strains. Covariances in (B) are zero everywhere except where white.

different scales of biological dynamics. In the context of infec-
tious diseases, it is often a lack of knowledge of the mechanistic
details of within-host dynamics that prevents the application of
theoretical results. These within-host dynamics are critical for un-
derstanding the evolutionary epidemiology of disease, however,
because they are what determines the pattern of transmission,
mortality, and recovery over the course of an infection, as well
as how these disease life-history attributes vary across pathogen
genotypes.

These difficulties have motivated the so-called function-
valued trait approach presented here. These models aim to cap-
ture the relevant evolutionary information about the within-host
aspects of disease in a phenomenological way, through the use of

statistical estimates of genetic covariance functions for the dis-
ease life-history traits of interest. Such an approach still allows
one to predict the evolutionary dynamics of disease life histories,
but it does so in a way that alleviates the need to understand the
mechanistic processes through which these disease life-history
traits arise.

The examples presented here illustrate the general tech-
niques, and they also demonstrate how the approach can be
used in cases where we do actually understand the within-host
dynamics in a quantitative way. Furthermore, they also reveal
some interesting general findings about the evolution of infectious
diseases. For instance, these models show that even relatively sim-
ple within-host processes can give rise to rather complex patterns
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Figure 3. Pattern of evolution in the average level of virulence
over time, using the genetic constraints described in Figure 2. From
t = 0 until t = 200 the epidemic is expanding, after which it con-
tracts somewhat and then settles to an endemic level from t = 500
onwards. Parameter values are as in Figure 2, along with θ = 10, µ

= 0.01, v1(a) + γ ≡ 0.001, v2(a) + γ ≡ 0.02, with initial conditions:
Ii(0, 0) = 1 and Ii(a, 0) = 0 for a #= 0, along with S0 = 100.

of genetic constraint on disease life-history evolution. They also
demonstrate that quite small differences in within-host processes
can lead to quite large differences in these patterns of genetic
constraint. Interestingly, the models also reveal that the trade-off
hypothesis from evolutionary epidemiology (Anderson and May
1982; Ewald 1983; Fraser et al. 2007; de Roode et al. 2008; Alizon
et al. 2009) can be much more subtle than is usually appreciated.
In contrast to most descriptions, the existence of an evolutionary
trade-off between transmission and virulence is not solely a prop-
erty of the host–pathogen interaction. Rather, the existence of a
trade-off arises from an interplay between the pattern of genetic
variation in the pathogen population, and the epidemiological dy-
namics of the disease at the level of the host population. The
reason is that the epidemiological dynamics in the host popula-
tion determine the age distribution of infections, and if patterns of
genetic constraint in the pathogen population vary as a function
of infection age, then changes in this age distribution will affect
the consequences of genetic constraints as well.

Of course any real utility of the approach presented here must
come from its application to real data. In principle this should be
easier than with previous theoretical approaches, but there are still
relatively few datasets available that are sufficient. The requisite
data are beginning to appear, however, and we present an example
of this as a proof of principle in a companion paper. Our hope
is that these empirical examples will motivate the collection of
further such data.

Finally, it is worth noting that the approach developed here
is very closely related to models of function-valued traits in quan-
titative genetics (Kirkpatrick and Heckman 1989; Kirkpatrick
and Lofsvold 1992; Gomulkiewicz and Beder 1996; Beder and

Gomulkiewicz 1998; Kingsolver et al. 2001). In those models,
the function-valued trait of interest is usually an organismal char-
acteristic, such as an age-size relationship. The analogue of a
within-host model in such examples would then be a model for
the developmental processes that give rise to this size versus age
function. As with the disease examples presented here, however,
the information required to build such developmental models is
typically not available, and therefore these approaches necessar-
ily employ phenomenological descriptions of genetic covariance
patterns as well.

This functioned-valued approach has become quite widely
applied in the context of quantitative genetics, and the prospects
for its application in the context of disease evolution should be
at least as good. Indeed, estimates of the required genetic covari-
ance functions might sometimes be even easier to obtain in the
context of diseases because of shorter generation times and the
lack of a need for complex breeding designs. Furthermore, for
some diseases we do have the beginnings of an understanding of
the details of within-host process. As a result, in these cases we
might even be able to use this knowledge to derive the patterns
of covariance from a mechanistic model of within-host dynam-
ics. This would not only provide a second, independent, approach
for quantifying these important functions, but it might also allow
one to predict how these covariance structures evolve over time
as well.
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Appendix A - Some Technical
Remarks
In general, to bridge the within- and between-host dynamics of
disease transmission, one needs to account for the fact that the
population of infections at the between-host level is structured by
a number of different state variables at the within-host level (e.g.,
pathogen density, immune status, etc). Thus, one might use tech-
niques for modeling physiologically structured populations (Metz
and Diekmann 1986; Gyllenberg and Hanski 1992). The approach
taken here is essentially a simplification of these techniques. In
particular, we assume that “infection age” is the single variable
required to characterize the structure of the infected population.
This greatly simplifies both the analysis and its application to
data, and it is appropriate provided that the dynamics of all the
relevant within-host state variables are deterministic. In particu-
lar, when these dynamics are deterministic, the age of an infection
(along with initial conditions) completely determines the within-
host state. We note that most previous analyses that bridge these
two scales of dynamics assume this type of deterministic dynam-
ics as well, but it would be interesting to extend the results beyond
this simplification.

Given that infection age is the sole means by which infections
are structured, we focus on the evolution of traits that are functions
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of infection age. We restrict attention to evolution within the
Hilbert space of square-integrable functions on the interval (0,
α); that is, L2(0, α). The value of α will differ depending on the
function-valued trait of interest, but for notational simplicity we
set α = ∞. The norm of an element, τ(a) ∈ L2(0,∞), is thus
taken to be the L2 norm given by the Lebesgue integral ||τ(a)|| =∫ ∞

0 τ(a)2da (Hutson et al. 2005).
Each pathogen genotype i encodes a specific function,

τi (a) ∈ L2(0,∞), and the fitness of this strain (defined as the
per capita rate of change of hosts infected with this strain) is as-
sumed to be determined by τi(a). The fitness of pathogen strain i
can thus be viewed as the value obtained by applying an operator,
J[·] (in this case a functional) to the element τi(a). Throughout
we use square bracket notation to indicate functionals.

In many cases J[·] will be nonlinear, and we will want to
approximate it with a linear operator near a function of interest.
We say that the functional J[·] is Fréchet differentiable at τ∗ if
there exists a bounded linear operator, L[·] such that J[τ∗ + h] =
J[τ∗] + L[τ∗]h + o(h) as h → 0 in the L2 norm. L[τ∗] is called
the Fréchet derivative at τ∗ and the notation L[τ∗]h denotes this
linear operator applied to the element h.

Appendix B - Derivation of
Evolutionary Dynamics
To begin, we need to track the dynamics of the frequency of strain
i among infected individuals. Define IT

i (t) =
∫ ∞

0 Ii(a, t)da as the
total number of hosts infected with strain i, N(t) =

∑
iIT

i (t) as the
total number of infected hosts of all types, and

pi (t) = I T
i (t)/N (t) (B1)

as the frequency of strain i among infected individuals. From
equation (B1), the dynamics of pi are

dpi (t)
dt

= dI T
i /dt
N

− pi
dN/dt

N
. (B2)

To simplify (B2), we derive an expression for the time dynamics
of IT

i and N;

dI T
i

dt
=

∫ ∞

0

∂ Ii (a, t)
∂t

da (B3a)

= −
∫ ∞

0

∂ Ii (a, t)
∂a

da −
∫ ∞

0
Di (a, t)Ii (a, t)da (B3b)

= I T
i (t)

∫ ∞

0
Bi (a, t)qi (a, t)da − I T

i (t)
∫ ∞

0
Di (a, t)qi (a, t)da

(B3c)

= r̃i (t)I T
i (t) (B3d)

and

dN
dt

=
∑

i

dI T
i /dt (B4a)

= ¯̃r i (t)N (t). (B4b)

Substituting into (B2) then yields

dpi (t)
dt

= pi (t)(r̃i (t) − ¯̃r i (t)). (B5)

The time dynamics of τ̄(a, t) is therefore given by

˙̄τ(a, t) =
∑

i

τi (a)pi (t)(r̃i (t) − ¯̃r i (t)) (B6a)

= cov[τi (a), r̃i (t)]. (B6b)

It is worth noting that the average value of τ(a, t) that satisfies
the above equation is only one way in which the average of the
function-valued trait might be calculated. In fact there are three
common possibilities for how we might quantify the average value
of the function, τ, at infection age a. First, we might take all infec-
tions of age a and calculate the average τ value of these infections.
Second, we might take all newly produced infections and calcu-
late the average τ value that they would express at age a. Third, we
might take all current infections and calculate the average τ value
that they would express at age a. Interestingly, to our knowledge
no theory has been developed using approach 1 and, in fact, most
life-history theory uses approach 2. The analysis above, however,
uses approach 3. Our reason for this choice stems from our in-
terest in developing a framework that can be readily applied to
natural populations of infected hosts. In such cases it is usually
impossible to ascertain the age of naturally occurring infections
(unlike organismal age in life-history theory) and therefore there
would be no way of restricting measurements to newly produced
infections (or any other infection age for that matter). However,
one might readily sample propagules from a random collection
of all existing infections, and then conduct common garden ex-
periments to measure the characteristics of the disease caused by
these propagules at any infection age of interest. Nevertheless, an
interesting avenue for future research is to explore the similarities
and differences of theory developed for each of these different
possibilities.

Appendix C - Derivation of
Euler-Lotka Equation
Once a stable infection age distribution is reached, qi (s, t) =
q0e−

∫ s
0 Di (z,t)dze−sρ[τi ](t) (e.g., see Day 2001 equation A4) and
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r̃i (t) = ρ[τi ](t). Therefore, (3) becomes

ρ[τi ](t) =
∫ ∞

0
Bi (s, t)q0e−

∫ s
0 Di (z,t)dze−sρ[τi ](t)ds

−
∫ ∞

0
Di (s, t)q0e−

∫ s
0 Di (z,t)dze−sρ[τi ](t)ds.

(C1)

Integrating the second term by parts gives

ρ[τi ](t) = q0

∫ ∞

0
Bi (s, t)e−

∫ s
0 Di (z,t)dze−sρ[τi ](t)ds

−q0 + ρ[τi ](t)
(C2)

or

1 =
∫ ∞

0
Bi (s, t)e−

∫ s
0 Di (z,t)dze−sρ[τi ](t)ds (C3)

which is equation (5).

Appendix D - A Linear
Approximation
If the genetic variation in the pathogen population is not too large,
in the sense that each genotype’s trait, τ(s) is not too far from the
population average, τ̄(s), then we can approximate ρ[·](t) with
a linear functional as ρ[τ(s)](t) ≈ ρ[τ̄(s)](t) + L[τ̄(s)](t) (τ(s) −
τ̄(s)) where L[τ̄(s)](t) is the Fréchet derivative of ρ at time t
(Hutson et al. 2005). Substituting this approximation into (2)
yields

˙̄τ(a, t) ≈ cov[τi (a), ρ[τ̄(s)](t) + L[τ̄(s)](t) (τi (s) − τ̄(s))]
(D1a)

= cov[τi (a), L[τ̄(s)](t) (τi (s) − τ̄(s))] (D1b)

= L[τ̄(s)](t) cov[τi (a), (τi (s) − τ̄(s))] (D1c)

or

˙̄τ(a, t) ≈ L[τ̄(s)](t) Gτ,τ(a, s; t). (D2)

For most models of interest, the Fréchet derivatives will typ-
ically be linear integral operators of the form L[τ̄(s)](t)h =∫ ∞

0 φ(s, t ; τ̄)h(s)ds for some function φ(s, t ; τ̄), and therefore we
have equation (7) of the text.

Finally, we note that equation (D2) can be generalized to
situations in which the asymptotic growth rate, ρ, is dependent on
multiple functions. For example, in the case where the asymptotic
growth rate depends on two function (e.g., ρ[τi(a), ωi(a)]), the
evolutionary dynamics of τ̄(a, t) and ω̄(a, t) is given by

˙̄τ(a, t) ≈ Lτ[τ̄(s), ω̄(s)](t) Gτ,τ(a, s; t)

+Lω[τ̄(s), ω̄(s)](t) Gτ,ω(a, s; t)
(D3a)

˙̄ω(a, t) ≈ Lτ[τ̄(s), ω̄(s)](t) Gω,τ(a, s; t)

+Lω[τ̄(s), ω̄(s)](t) Gω,ω(a, s; t)
(D3b)

where Lτ[τ̄(s), ω̄(s)](t) and Lω[τ̄(s), ω̄(s)](t) denote the Fréchet
derivatives with respect to τ and ω, respectively. in the case that
these derivatives are integral operators we have

˙̄τ(a, t) ≈
∫ ∞

0
φτ(s, t ; τ̄, ω̄)Gτ,τ(a, s; t)ds

+
∫ ∞

0
φω(s, t ; τ̄, ω̄)Gτ,ω(a, s; t)ds

(D4a)

˙̄ω(a, t) ≈
∫ ∞

0
φτ(s, t ; τ̄, ω̄)Gω,τ(a, s; t)ds

+
∫ ∞

0
φω(s, t ; τ̄, ω̄)Gω,ω(a, s; t)ds.

(D4b)

Appendix E - Host Heterogeneity
and Environmental Noise
Throughout the main text, we assume that the “birth” and “death”
rate functions, Bi(a, t) and Di(a, t), are determined solely by
pathogen genotype, i. Likewise, in the examples where we ex-
plicitly track the evolution of within-host density, τi(a), we as-
sume that this is entirely determined by pathogen genotype, i,
as well. In reality host heterogeneity and environmental noise
will cause τ(a), or more generally B(a, t) and D(a, t), to vary
even within a single genotype. Here we illustrate how such ef-
fects can be incorporated into the theory developed in the main
text.

Suppose that both birth and death rates depend on some
factor, e, in addition to genotype; that is, Bie(a, t) and Die(a, t).
The variable e might represent different types of hosts, or simply
random environmental perturbations. For simplicity, we will refer
to it as “noise” because we are interested in pathogen evolution
that is averaged over this variation. Infections of type ie might
change their noise status to infections of type i ê over the course
of an infection, and thus we begin by deriving an equation for the
dynamics of the density of infections of type ie, denoted by Iie(a,
t). Similar to equation (1) we have

∂ Iie(a, t)
∂t

= −∂ Iie(a, t)
∂a

− Die(a, t)Iie(a, t)

−ξ(1 − κee)Iie(a, t) + ξ
∑

ê κêe Ii ê(a, t)
(E1)

with boundary condition Iie(0, t) =
∫ ∞

0 Bie(a, t)Iie(a, t)da. Here ξ

is the rate at which a potential change in the noise state occurs, and
given this, κêe is the probability of changing from state ê to e. We
are primarily interested in the dynamics of all hosts infected with
a specific genotype, and therefore defining Ii(a, t) =

∑
eIie(a, t)
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as the total density of infections with genotype i, the dynamics of
Ii(a, t) can be derived as

∂ Ii (a, t)
∂t

=
∑

e

∂ Iie(a, t)
∂t

(E2a)

=
∑

e

(
− ∂ Iie(a, t)

∂a
− Die(a, t)Iie(a, t)

−ξ(1 − κee)Iie(a, t) + ξ
∑

ê

κêe Ii ê(a, t)
) (E2b)

= −∂ Ii (a, t)
∂a

− Di (a, t)Ii (a, t) (E2c)

with boundary condition Ii(0, t) =
∫ ∞

0 Bi(a, t)Ii(a, t)da, and
where Bi(a, t) and Di(a, t) are interpreted as the birth and death

rates of infections with genotype i averaged over the noise dis-
tribution; that is, Bi (a, t) =

∑
e Bie(a, t) Iie(a,t)

Ii (a,t) and Di (a, t) =∑
e Die(a, t) Iie(a,t)

Ii (a,t) . Equation (E2) is identical to equation (1) pro-
vided we interpret Bi(a, t) and Di(a, t) in this way. Thus, the
general results of the main text continue to hold with this new in-
terpretation, provided that the frequency distribution of noise (i.e.,
Iie(a,t)
Ii (a,t) , which is the frequency distribution of host types, random

perturbations, etc.) does not change through time.
Likewise, suppose instead that the within-host pathogen den-

sity, τie(a) was influenced by both genotype, i, and some noise
factor, e. The above equations (E2) still continue to hold because
B and D again vary with these two factors through their depen-
dence on τie(a). If we then use τi(a) to denote the τ function for
genotype i, averaged over the noise distribution, the calculations
of Appendix B also carry through unchanged.
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